Abstract
Published high-resolution rotation-vibration transitions of H212C16O, the principal isotopologue of methanal, are analyzed using the MARVEL (Measured Active Rotation-Vibration Energy Levels) procedure. The literature results are augmented by new, high-accuracy measurements of pure rotational transitions within the ground, ν3,ν4, and ν6 vibrational states. Of the 16 596 non-redundant transitions processed, which come from 43 sources including the present work, 16 403 could be validated, providing 5029 empirical energy levels of H212C16O with statistically well-defined uncertainties. All the empirical rotational-vibrational energy levels determined are used to improve the accuracy of ExoMol’s AYTY line list for hot formaldehyde. The complete list of collated experimental transitions, the empirical energy levels determined, as well as the extended and improved line list are provided as Supplementary Material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.