Abstract

In this paper, we investigate the dissipativity and passivity of Markovian jump stochastic neural networks involving two additive time-varying delays. Using a Lyapunov-Krasovskii functional with triple and quadruple integral terms, we obtain delay-dependent passivity and dissipativity criteria for the system. Using a generalized Finsler lemma (GFL), a set of slack variables with special structure are introduced to reduce design conservatism. The dissipativity and passivity criteria depend on the upper bounds of the discrete time-varying delay and its derivative are given in terms of linear matrix inequalities, which can be efficiently solved through the standard numerical software. Finally, our illustrative examples show that the proposed method performs well and is successful in problems where existing methods fail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.