Abstract
Abstract. We implement a detailed representation of aerosol mixing state in the Global Environmental Multiscale – Modelling Air quality and CHemistry (GEM-MACH) air quality and weather forecast model. Our mixing-state representation includes three categories: one for more hygroscopic aerosol, one for less hygroscopic aerosol with a high black carbon (BC) mass fraction, and one for less hygroscopic aerosol with a low BC mass fraction. The more detailed representation allows us to better resolve two different aspects of aerosol mixing state: differences in hygroscopicity due to aerosol composition and the amount of absorption enhancement of BC due to non-absorbing coatings. Notably, this three-category representation allows us to account for BC thickly coated with primary organic matter, which enhances the absorption of the BC but has a low hygroscopicity. We compare the results of the three-category representation (1L2B, (one hydrophilic, two hydrophobic)) with a simulation that uses two categories, split by hygroscopicity (HYGRO), and a simulation using the original size-resolved internally mixed assumption (SRIM). We perform a case study that is focused on North America during July 2016, when there were intense wildfires over northwestern North America. We find that the more detailed representation of the aerosol hygroscopicity in both 1L2B and HYGRO decreases wet deposition, which increases aerosol concentrations, particularly of less hygroscopic species. The concentration of PM2.5 increases by 23 % on average. We show that these increased aerosol concentrations increase cloud droplet number concentrations and cloud reflectivity in the model, decreasing surface temperatures. Using two categories based on hygroscopicity yields only a modest benefit in resolving the coating thickness on black carbon, however. The 1L2B representation resolves BC with thinner coatings than the HYGRO simulation, resulting in absorption aerosol optical depths that are 3 % less on average, with greater differences over strong anthropogenic source regions. We did not find strong subsequent effects of this decreased absorption on meteorology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.