Abstract

Compared with the traditional negative selection algorithms produce detectors randomly in whole state space, the boundary-fixed negative selection algorithm (FB-NSA) non-randomly produces a layer of detectors closely surrounding the self space. However, the false alarm rate of FB-NSA is higher than many anomaly detection methods. Its detection rate is very low when normal data close to the boundary of state space. This paper proposed an improved FB-NSA (IFB-NSA) to solve these problems. IFB-NSA enlarges the state space and adds auxiliary detectors in appropriate places to improve the detection rate, and uses variable-sized training samples to reduce the false alarm rate. We present experiments on synthetic datasets and the UCI Iris dataset to demonstrate the effectiveness of this approach. The results show that IFB-NSA outperforms FB-NSA and the other anomaly detection methods in most of the cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.