Abstract

Combined heat and power economic dispatch (CHPED) is an energy management problem that minimizes the operation cost of power and heat generation while a vast variety of operational constraints of the system should be met. The CHPED is a complicated, non-convex and non-linear problem. In this study, a new real-coded genetic algorithm with random walk-based mutation (RCGA-CRWM) is under study, which is effective in solving large-scale CHPED problem with minimum operation cost. In the presented optimization method, a simple approach is introduced to combine the positive features of different probabilistic distributions for the step size of random walk. Using the presented approach, while the genetic algorithm is speeded up, the premature convergence is also avoided. After verifying the performance of the presented method on the benchmark functions, two large-scale and two medium-scale case studies are used for determining the algorithm strength in solving the CHPED problem. Despite the fact that the complexity of the CHPED rises dramatically by increasing its dimensionality, the algorithm has solved the problems accurately. The application of RCGA-CRWM method improves the results of the CHPED problem in terms of both operation cost and convergence speed in comparison with other optimization methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call