Abstract

In a recent work we constructed a quasi-diabatic representation, H(d), of the 1, 2, 3(1)A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H(d) accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H(d) for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate H(d) compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ∼ 248 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.