Abstract
The Rapidly-exploring Random Tree (RRT) algorithm is an efficient path-planning algorithm based on random sampling. The RRT* algorithm is a variant of the RRT algorithm that can achieve convergence to the optimal solution. However, it has been proven to take an infinite time to do so. An improved Quick-RRT* (Q-RRT*) algorithm based on a virtual light source is proposed in this paper to overcome this problem. The virtual light-based Q-RRT* (LQ-RRT*) takes advantage of the heuristic information generated by the virtual light on the map. In this way, the tree can find the initial solution quickly. Next, the LQ-RRT* algorithm combines the heuristic information with the optimization capability of the Q-RRT* algorithm to find the approximate optimal solution. LQ-RRT* further optimizes the sampling space compared with the Q-RRT* algorithm and improves the sampling efficiency. The efficiency of the algorithm is verified by comparison experiments in different simulation environments. The results show that the proposed algorithm can converge to the approximate optimal solution in less time and with lower memory consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computer Systems Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.