Abstract

Efficient emergency material dispatch, amid the aftermath of an emergency event, can help control the spread of the disaster and reduce disaster losses. Herewith, we propose a model with the urgency of material demand as the target coefficient, and the minimum load time and the minimum transportation cost as the total cost. For this model, an improved particle swarm optimization (PSO) algorithm is proposed as the means to optimize the initial positions of particles with good point sets and improve the convergence speed with adaptive dynamic weights to improve the optimization of the emergency material dispatch model. In order to verify the effectiveness of the proposed model and algorithm improvement strategy, the experimental results are verified by means of simulation experiments and algorithm comparison experiments, which show that the proposed emergency material dispatch model and the improved PSO algorithm cannot only solve the post-disaster relief material distribution and dispatching problem but also effectively reduce the total cost of emergency material dispatching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call