Abstract

High impedance Arcing faults (HIAFs) are normally caused by ruptured conductors, leaning of a tree with high impedance, and/or the presence of a high impedance object between the conductor and earth. In such cases, protections available in the microgrid may not be capable of detecting the HIAFs. Hence, to increase the safety level and reliability of the microgrid, it is essential to take action for fast and reliable detection of these types of faults. Therefore, the present study introduces an appropriate strategy to detect HIAFs using a pattern recognition approach. To this end, different scenarios are implemented in the training data extraction step considering the measurement units embedded in a 25 kV microgrid in the presence of Distributed Generations (DG) and Renewable Energy Sources (RESs) in the EMTP-RV software environment. Then, after the initial processing, the scenarios are scaled-down and compared using the Pearson Correlation Coefficient (PCC) and Principal Component Analysis (PCA) methods. Next, the processed data is classified using the Support Vector Machine (SVM) method by selecting the most appropriate kernel. Simulation results in EMTP-RV and MATLAB environments demonstrate that the proposed strategy is capable of fast detection of HIAFs in microgrids with a high level of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.