Abstract

Aiming at the problem of the low accuracy of projector calibration in a structured light system, an improved projector calibration method is proposed in this paper. One of the key ideas is to estimate the sub-pixel coordinates in the projector image plane using local random sample consensus (RANSAC). A bundle adjustment (BA) algorithm is adopted to optimize the calibration parameters to further improve the accuracy and robustness of the projector calibration. After system calibration and epipolar rectification, the mapping relationship between the pixel coordinates and the absolute phase in the projector image plane is established by using cubic polynomial fitting, and the disparity is rapidly solved by using the mapping relationship, which not only ensures the measurement accuracy, but also improves the measurement efficiency. The experimental results demonstrated that the average re-projection error after optimization is reduced to 0.03 pixels, and the proposed method is suitable for high-speed 3D reconstruction without the time-consuming homogenous point searching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call