Abstract

In this paper, an improved Poisson-Nernst-Planck ion channel (PNPic) model is presented, along with its effective finite element solver and software package for an ion channel protein in a solution of multiple ionic species. Numerical studies are then done on the effects of boundary value conditions, membrane charges, and bulk concentrations on electrostatics and ionic concentrations for an ion channel protein, a gramicidin A (gA), and five different ionic solvents with up to four species. Numerical results indicate that the cation selectivity property of gA occurs within a central portion of ion channel pore, insensitively to any change of boundary value condition, membrane charge, or bulk concentration. Moreover, a numerical scheme for computing the electric currents induced by ion transports across membrane via an ion channel pore is presented and implemented as a part of the PNPic finite element package. It is then applied to the calculation of current-voltage curves, well validating the PNPic model and finite element package by electric current experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.