Abstract
The plasticity-based distortion prediction method was improved to address the computationally intensive nature of welding simulations. Plastic strains, which are typically first computed using either two-dimensional (2D) or three-dimensional (3D) thermo-elastic-plastic analysis (EPA) on finite element models of simple weld geometry, are mapped to the full structure finite element model to predict distortion by conducting a linear elastic analysis. To optimize welding sequence to control distortion, a new theory was developed to consider the effect of weld interactions on plastic strains. This improved method was validated with experimental work on a Tee joint and tested on two large-scale welded structures—a light fabrication and a heavy fabrication—by comparing against full-blown distortion predictions using thermo-EPA. 3D solid and shell models were used for the heavy and light fabrications, respectively, to compute plastic strains due to each weld. Quantitative comparisons between this method and thermo-EPA indicate that this method can predict distortions fairly accurately—even for different welding sequences—and is roughly 1-2 orders of magnitude faster. It was concluded from these findings that, with further technical development, this method can be an ideal solver for optimizing welding sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.