Abstract

The phase field model is a promising method for simulating fatigue crack growth (FCG) behavior. However, the conventional phase field (PF) model may not adequately account for constraint effects, where fracture toughness is affected by geometries. Therefore, stress triaxiality is incorporated into the PF model by modifying the fracture energy release rates to consider constraint effects. The model successfully simulates the FCG behavior of different geometries, such as CT, SENB, and MT specimens, as well as the mixed-mode FCG behavior of CTS specimens and other complex geometries. All simulations agree well with experiments, proving that our model is capable to capture the constraint effects in FCG behavior. These findings indicate that stress triaxiality is important to capture the constraint effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.