Abstract

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.