Abstract

The full potential of computational models of arterial wall mechanics has yet to be realized primarily because of a lack of data sufficient to quantify regional mechanical properties, especially in genetic, pharmacological, and surgical mouse models that can provide significant new information on the time course of adaptive or maladaptive changes as well as disease progression. The goal of this work is twofold: first, to present modifications to a recently developed panoramic-digital image correlation (p-DIC) system that significantly increase the rate of data acquisition, overall accuracy in specimen reconstruction, and thus full-field strain analysis, and the axial measurement domain for in vitro mechanical tests on excised mouse arteries and, second, to present a new method of data analysis that similarly increases the accuracy in image reconstruction while reducing the associated computational time. The utility of these advances is illustrated by presenting the first full-field strain measurements at multiple distending pressures and axial elongations for a suprarenal mouse aorta before and after exposure to elastase. Such data promise to enable improved inverse characterization of regional material properties using established computational methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.