Abstract

Noise suppression of an echo signal plays an important role in high-frequency ultrasonic testing of flip chips. This paper proposes an orthogonal matching pursuit (OMP) method optimized by an improved artificial bee colony (ABC) algorithm for denoising high-frequency ultrasonic testing signals of flip chips. We add adaptive learning factors to change the way the ABC randomly selects the search direction, which speeds up the convergence speed of the algorithm. The improved ABC, named adaptive artificial bee colony (AABC), replaces the greedy search process of OMP. Instead of searching for the atom that best matches the echo signal, the improved OMP algorithm searches for the optimal parameter and replaces the atom with a set of parameters with practical physical significance. The introduction of the AABC changes the search space of OMP from discrete dictionary space to continuous parameter space, which minimizes the error between the atom and echo signal and leads to an accurate approximation. Additionally, the AABC reduces the search times of OMP and improves the convergence speed. Then, the wavelet transform thresholding technology is combined with the attenuation characteristic of high-frequency ultrasound to eliminate the influence of error decomposition caused by noise and inaccurate sparsity setting. We present the noise suppression experimental results of high-frequency ultrasonic simulation and real testing signals of flip chips, including Gaussian white noise and correlated noise, and compare the proposed method with other sparse representation methods, including matching pursuit (MP) and OMP. The results demonstrate the superior performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.