Abstract
ORB (Oriented FAST and Rotated BRIEF) algorithm is widely used in feature point matching with images. However, the randomness of the threshold of search strategy makes the matching result inaccurate. The matching result of ORB algorithm is lack of robustness. In this paper, we proposed an improved ORB algorithm based on PSO (Particle Swarm Optimization) algorithm. Firstly, ORB algorithm was used to detect image feature points. Secondly, distance similarity measurement is applied to ORB and orientation constraint was added to reduce mismatching rate. Finally, particle swarm optimization algorithm was used to optimize the threshold of search strategy. Experimental results showed that the improved algorithm can effectively improve the accuracy of image matching and expand the scope of application of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.