Abstract

In this paper the 0–1 combined BEM is adopted to subdivide the computational domain boundary, and to discretize the Green’s integral expression based on Laplace equation. The FEM is used to subdivide the wave surface and deduce the surface equation which satisfies the nonlinear boundary conditions on the surface. The equations with potential function and wave surface height as an unknown quantity by application of Taylor expansion approach can be solved by iteration within the time step. In m-time iteration within the computational process of time step (n-1)Δt to nΔt, the results of the previous iteration are taken as the initial value of the two-order unknown terms in the present iteration. Thus, an improved tracking mode of nonlinear wave surface is established, and numerical results of wave tank test indicate that this mode is improved obviously and is more precise than the previous numerical model which ignored the two-order unknown terms of wave surface location and velocity potential function in comparison with the theoretical values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.