Abstract

In this paper, an improved numerical algorithm for the fractional differential equations is proposed based on the variational iteration method. Using the improved numerical scheme, we investigate a new fractional-order hyperchaotic system, and find that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4. The lowest order we find to yield hyperchaos is 3.46 in this new fractional-order system. The existence of two positive Lyapunov exponents further verifies our results. Numerical results show that the proposed method has a faster speed and more accurate comparing with the traditional predictor-corrector algorithm. Based on the stability theory of the fractional-order system, a nonlinear controller is constructed to achieve synchronization fora class of nonlinear fractional-order systems using the pole placement technique. The nonlinear control method can synchronize two different fractional-order hyperchaotic systems. This synchronization scheme which is simple and theoretically rigorous enables synchronization of fractional-order hyperchaotic systems to be achieved in a systematic way and does not need to compute the conditional Lyapunov exponents. Simulation results are given to validate the effectiveness of the proposed synchronization method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call