Abstract

In this paper a quasi-Newton projection method for image deblurring is presented. The image restoration problem is mathematically formulated as a nonnegatively constrained minimization problem where the objective function is the sum of the Kullback---Leibler divergence, used to express fidelity to the data in the presence of Poisson noise, and of a Tikhonov regularization term. The Hessian of the objective function is approximated so that the Newton system can be efficiently solved by using Fast Fourier Transforms. The numerical results show the potential of the proposed method both in terms of relative error reduction and computational efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call