Abstract

Calibration of multihole aerodynamic pressure probe is a compulsory and important step in applying this kind of probe. This paper presents a new neural-network-based method for the calibration of such probe. A new type of evolutionary algorithm, i.e., differential evolution (DE), which is known as one of the most promising novel evolutionary algorithms, is proposed and applied to the training of the neural networks, which is then used to calibrate a multihole probe in the study. Based on the measured probe’s calibration data, a set of multilayered feed-forward neural networks is trained with those data by a modified differential evolution algorithm. The aim of the training is to establish the mapping relations between the port pressures of the probe being calibrated and the properties of the measured flow field. The proposed DE method is illustrated and tested by a real case of calibrating a five-hole probe. The results of numerical simulations show that the new method is feasible and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.