Abstract

Several improvements of the k-nearest neighbor (k-NN) method for the determination of the entry point (x, y) of a gamma photon in a monolithic scintillator PET detector have been investigated with the aim to obtain better spatial resolution and/or to enable faster detector calibration by reducing the amount of required reference data and by allowing for calibrating with a line source. These methods were tested on a dataset measured with a SiPM-array-based monolithic LYSO detector. It appears that ∼10% to ∼25% better spatial resolution can be obtained compared to the standard approach. Moreover, some of the improved methods using two orders of magnitude less reference data, yield essentially the same spatial resolution as the standard method, which reduces the time needed for calibration as well as entry point computation. Finally, line source calibration is shown to be possible with some of the methods, yielding better results than the standard method and allowing much faster and easier collection of the reference data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.