Abstract

An improved Near-Field Computer Vision (NFCV) system for intelligent fire robot was proposed that was based on our previous works in this paper, whose aims are to realize falling position prediction of jet trajectory in fire extinguishing. Firstly, previous studies respecting the NFCV system were briefly reviewed and several issues during application testing were analyzed and summarized. The improved work mainly focuses on the segmentation and discrimination of jet trajectory adapted to complex lighting environment and interference scenes. It mainly includes parameters adjustment on the variance threshold and background update rate of the mixed Gaussian background method, jet trajectory discrimination based on length and area proportion parameters, parameterization, and feature extraction of jet trajectory based on superimposed radial centroid method. When compared with previous works, the proposed method reduces the average error of prediction results from 1.36 m to 0.1 m, and the error variance from 1.58 m to 0.13 m. The experimental results suggest that every part plays an important role in improving the functionality and reliability of the NFCV system, especially the background subtraction and radial centroid methods. In general, the improved NFCV system for jet trajectory falling position prediction has great potential for intelligent fire extinguishing by fire-fighting robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.