Abstract

Cryptographic multilinear maps have extensive applications. However, current constructions of multilinear maps suffer from the zeroizing attacks. For a candidate construction of multilinear maps described by Garg, Gentry, and Halevi (GGH13), Hu & Jia recently presented an efficient attack, which broke the GGH13-based applications of multipartite key exchange (MPKE) and witness encryption (WE) based on the hardness of 3-exact cover problem. By introducing random matrix, the author presents an improvement of the GGH13 map, which supports the applications for public tools of encoding in the GGH13 map, such as MPKE and WE. The security of the construction depends upon new hardness assumption. Moreover, the author's improvement destroys the structure of the ring element in the principal ideal lattice problem, and avoids potential attacks using algorithm of solving short principal ideal lattice generator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.