Abstract
In this work, a multilevel thresholding approach that uses modified bacterial foraging optimization (MBFO) is presented for enhancing the applicability and practicality of optimal thresholding techniques. First, the diversity of solutions is considered during the reproduction step. Each weak bacterium randomly selects a strong bacterium from the healthiest bacteria, attempts to reach a location near the chosen strong bacterium, and maintains the same direction. Particle swarm optimization is subsequently incorporated into each chemotactic step to strengthen the global searching capability and quicken the convergence rate of the bacterial foraging algorithm. Finally, the optimal thresholds are obtained by maximizing the Tsallis thresholding functions using the proposed MBFO algorithm. The performance of the proposed algorithm in solving complex stochastic optimization problems is compared with other popular approaches such as a bacterial foraging algorithm, particle swarm optimization algorithm, and genetic algorithm. Experimental results show that the optimal thresholds produced using MBFO require less computation time. The devised algorithm generates more stable results, and the proposed method performs better than the other algorithms in terms of multilevel thresholding. In addition, MBFO method can achieve significantly better results than other compare algorithms on a set of benchmark functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.