Abstract
The fatigue life of the materials is significantly reduced under non-proportional loading. In this study, the factors affecting additional hardening are explored, and a hardening function is proposed. Firstly, the stress and strain states of the specimen under multiaxial loading are analyzed, and the deficiencies of the equivalent strain models are discussed. Secondly, the factors affecting the additional hardening are analyzed from both stress and strain perspectives, and the effect of phase differences on fatigue life is investigated. The stress on the critical plane is considered to reflect its effect on crack initiation and growth. An improved multiaxial low-cycle fatigue life prediction model is developed based on the equivalent strain approach. Finally, experimental data from five metals are used to verify the established model and are compared with existing classical models. The results show that the proposed model has good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.