Abstract

Engine hood is one of the important parts of the vehicles, which has influences on the lightweight, structural safety, pedestrian protection, and aesthetics. The optimization design of engine hood is a high-dimensional, multi-objective, and mixed-variable optimization problem. In order to reduce the physical test investment in the development and improve the efficiency of optimization, this article proposes a data-driven method for optimal hood design. A newly proposed single-objective optimization algorithm is improved by several strategies for multi-objective constrained problem with mixed variables. Then the hood is optimized through the specially designed machine learning model. Finally, both the hood's weight and pedestrian injury are reduced while maintaining structural stiffness and frequency in the desired range. The comparative study and final hood optimization results prove the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call