Abstract

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been employed in the analysis of bacterial growth. In comparison to experiments conducted on mammalian cells, the MTT bacterial assay encounters a greater number of interfering factors and obstacles that impact the accuracy of results. In this study, we have elucidated an improved MTT assay protocol and put forth an equation that establishes a correlation between colony-forming units (CFU) and the amount of formazan converted by the bacteria, drawing upon the fundamental principle of the MTT assay. This equation is represented as CFU=kF. Furthermore, we have explicated a methodology to determine the scale factor “k” by employing S. aureus and E. coli as illustrative examples. The findings indicate that S. aureus and E. coli reduce MTT by a cyclic process, from which the optimal reduction time at room temperature was determined to be approximately 30 mins. Furthermore, individual E. coli exhibits an MTT reduction capacity approximately four times greater than that of S. aureus. HPLC analysis proves to be the most accurate method for mitigating interferences during the dissolution and quantification of formazan. Additionally, this study has identified a new constraint related to the narrow linear range (0–125 μg/mL) of formazan concentration-absorbance and has presented strategies to circumvent this limitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.