Abstract

A meshfree method with a modified distribution function of Moving Kriging (MK) interpolation is investigated. This method is then combined with a high order shear deformation theory (HSDT) for static, dynamic and buckling analyses of functionally graded material (FGM) isotropic and sandwich plates. A meshfree method uses the normalized form of MK interpolation under a new quartic polynomial correlation to build the basis shape functions in high order approximations. The Galerkin weak form is used to separate the system equations which is numerically solved by meshfree method. A rotation-free technique extracted from isogeometric analysis is introduced to eliminate the degrees of freedom of slopes. Then, the method retains a highly computational effect with a lower number of degrees of freedom. In addition, the requirement of shear correction factors is ignored and the traction free is at the top and bottom surfaces of FGM plates. Various thickness ratios, boundary conditions and material properties are studied to validate the numerical analyses of the rectangular and circular plates. The numerical results show that the present theory is more stable and well accurate prediction as compared to three-dimensional (3D) elasticity solution and other meshfree methods in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.