Abstract

There are several approaches to model Asphaltene deposition process in the wellbore. There are different assumptions to simplify the problem in the previous investigations for specific conditions, limiting the prediction range of the models. In this work, the effect of precipitated asphaltene particles size is included, to extend the available modeling approaches for deposition profile. To do so, two-dimensional partial differential equations based on asphaltene micro aggregates material balance including asphaltene aggregation, diffusion and deposition are numerically discretized and solved to find asphaltene deposition profile, in radial and vertical directions of vertical oil wells. The modeling results are verified with the results of the well-known ADEPT (asphaltene deposition tool in flow lines) model of Kurup et al. (2011). The size dependent diffusion coefficients of Escobedo and Mansoori (2010) are used to extend the base model. In addition, the population balance method (PBM) was included to improve the aggregation process description with size distribution of asphaltene particles. Based on the developed model a parametric study is performed to study the effect of asphaltene particles average size, flow rate, wellbore radius and fluid viscosity. The model evaluation shows the importance of asphaltene particle size in the deposition profile. In addition, the evaluation results show that as the average asphaltene particle size increases for a given distribution, the amount of deposition in the wellbore decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.