Abstract

Summary In this work, we present two simple formulas for the skin of a perforated well caused by perforation damage: one for the reduction in permeability, and one for the increase in non-Darcy flow coefficient (beta factor). They are based on the inflow performance of a single perforation obtained by means of a prolate-spheroidal flow model. This model rigorously accounts for the flow convergence toward a perforation, especially near the tip of the perforation. It provides a more realistic description of the inflow than a radial flow model, the basis for the existing skin formulas proposed by McLeod (1983). In the case of perforations with a large aspect ratio and a thin damaged zone, the formula for the skin due to permeability reduction reduces to McLeod's formula. The formula for the non-Darcy skin yields a significantly larger skin than predicted by the radial flow model, up to a factor 1.4 for large aspect ratios. Finally, we demonstrate that perforated wells are much more liable to non-Darcy flow than openhole wells, in particular if the perforations are severely damaged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call