Abstract

The modeling of cutting forces plays an important role in the progress of research and technology in most machining processes. In particular, peripheral milling is a cutting process difficult to model due to the large number of variables involved. Among these variables, tool runout affects process performance by modifying milling force patterns, shortening the tool life and machine components, and by degrading workpiece quality. In this paper, a methodology to evaluate tool runout in peripheral milling is presented. The use of a boring toolholder is proposed to make controllable changes in the tool offset that modifies tool runout. In addition, the proposed methodology has been validated by means of a piezoactuator-based system that allows tool runout compensation through controlling workpiece displacement. Experimental and simulated results presented in this paper reveal the practical applications of this methodology for researchers and engineers involved in the practice of milling and its modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call