Abstract

In this work, two different thermodynamic softwares, ANGE using the TBASE database, and OPENCALPHAD using the TAF-ID (Thermodynamics of Advanced Fuels – International Database), have been integrated into the GERMINAL V2 fuel performance code (of the PLEIADES platform) in order to evaluate the chemical state of (U, Pu)O2 fuel and fission products in sodium cooled fast reactors. A model to calculate the composition and the thickness of the “Joint-Oxyde Gaine” (JOG) fission product layer in the fuel-clad gap has been developed. Five fuel pins with a final burnup ranging between 3.8 and 13.4% FIMA (Fissions per Initial Metal Atom) have been simulated, and the calculated width of the fission product layer have been compared with post irradiation examinations. The two different thermodynamic softwares have been compared in terms of computation time and predicted fuel-to-clad gap chemistry. The main elements and phases encountered in the fission productlayer have been identified, and the impact of the changing oxygen potential has been explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.