Abstract

For existing experimental methods, drying the sample to eliminate the effects of water in the pores is usually the first step to accurately measure the porosity of the coal reservoir. However, drying coal with relatively low rank easily leads to changes in the pore structure. In this study, we propose an improved NMR method to eliminate the signal of water in the connected pores by dipole-dipole interaction and spin-exchange interaction between the Mn2+ and the hydrogen proton. Thereby providing a simple and easy-to-use method for distinguishing connected pores and isolated pores in coal reservoirs. When the water-saturated sample is submerged in the MnCl2 solution, the movement of Mn2+ is mainly due to the diffusion. At a certain temperature, reservoir porosity, water saturation, and pore tortuosity-connectivity are the most important factors affecting the diffusion rate of Mn2+ in coal reservoirs. Due to the extremely high porosity, and well-connected, low-tortuosity pore structure of low-rank coal, Mn2+ can rapidly diffuse in its pore network. The accurate connected porosity and isolated porosity were calculated by this method. In general, during coalification processes, the originally well-connected pores were compacted and deformed, coupled with the matrix shrinkage, resulting in an increase in isolated porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.