Abstract
Medical devices generate huge amounts of continuous time series data. However, missing values commonly found in these data can prevent us from directly using analytic methods such as sample entropy to reveal the information contained in these data. To minimize the influence of missing points on the calculation of sample entropy, we propose a new method to handle missing values in continuous time series data. We use both experimental and simulated datasets to compare the performance (in percentage error) of our proposed method with three currently used methods: skipping the missing values, linear interpolation, and bootstrapping. Unlike the methods that involve modifying the input data, our method modifies the calculation process. This keeps the data unchanged which is less intrusive to the structure of the data. The results demonstrate that our method has a consistent lower average percentage error than other three commonly used methods in multiple common physiological signals. For missing values in common physiological signal type, different data size and generating mechanism, our method can more accurately extract the information contained in continuously monitored data than traditional methods. So it may serve as an effective tool for handling missing values and may have broad utility in analyzing sample entropy for common physiological signals. This could help develop new tools for disease diagnosis and evaluation of treatment effects.
Highlights
The demand for more advanced, more personalized treatments, increased availability of healthcare and an aging population are pushing the market and expanding medical device technology, especially in the area of wearables for continuous monitoring of physiological signals
We propose a new method to improve the algorithm of calculating sample entropy on data with missing values that does not involve imputing missing values before entropy calculation
Considering the need of calculating sample entropy on a dataset with a small size in real clinical settings, we further explore the case of a dataset with a small size (i.e., 0.5k, 1k, 2k) from four types of physiological signals
Summary
The demand for more advanced, more personalized treatments, increased availability of healthcare and an aging population are pushing the market and expanding medical device technology, especially in the area of wearables for continuous monitoring of physiological signals. These advancements require better analytic methods to extract the useful information contained in these data more accurately due to the huge amount of data generated by these devices. As a nonlinear dynamic index, sample entropy (one type of entropy) is often used to measure the complexity of the physiological system in medical research for disease diagnosis and prognosis. The change of entropy values (decrease or increase) have been shown to be a predictor of multiple diseases [3,10,11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.