Abstract

BackgroundMalignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20–50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion. This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity.MethodsC57BL/6 mice were injected with Lewis lung carcinoma (LL/2) cells intrapleurally to induce MPE. The mice then received either normal saline (NS) control, foam control (F), talc slurry (TS, 2 mg/g) or talc foam (TF, 2 mg/g). Airspace volume was evaluated by CT, lungs/pleura were collected, and percent fibrosis was determined.ResultsThe TF group had significantly better survival than the TS group (21 vs 13.5 days, p < 0.0001). The average effusion volume was less in the talc groups compared to the control group (140 vs 628 μL, p < 0.001). TF induced significant lung fibrosis (p < 0.01), similar to TS. On CT, TF significantly (p < 0.05) reduced loss of right lung volume (by 30–40%) compared to the control group. This was not seen with TS (p > 0.05).ConclusionsThis report describes using a novel talc foam delivery system for the treatment of MPE. In the LL/2 model, mice treated with the TF had better survival outcomes and less reduction of lung volume than mice treated with the standard of care TS. These data provide support for translational efforts to move talc foam from animal models into clinical trials.

Highlights

  • Malignant pleural effusion (MPE) is a devastating sequela associated with cancer

  • Talc foam is an effective sclerosing agent We evaluated the sclerosing potential of talc foam (TF; Fig. 1), which transitions from liquid to gel at temperatures above 29 °C, in comparison with talc slurry (TS), foam (F), or saline (S)

  • The percent fibrosis was significantly higher in the TF (p < 0.05) and TS (p < 0.01) groups compared to the lung fibrosis detected for S- or F- treated mice (Fig. 2b)

Read more

Summary

Introduction

Malignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20–50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity. Cancer is the second leading cause of death in the United States [1, 2], with primary lung cancer as the most common cause of cancer deaths, and death from all sources of cancer typically associated with uncontrolled metastases Both primary lung tumors and lung metastases originating from other primary sites commonly induce a process known as malignant pleural. Treatment of MPE predominantly aims to relieve dyspnea and improve the patient’s overall QoL in the least invasive manner possible [12] This is done by inducing pleurodesis (scarring) to reduce the pleural volume available for fluid accumulation. In the absence of any better approaches, there is need to reduce variability and increase overall effectiveness of this technique

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.