Abstract

A method is developed for solving quasi-linear convection diffusion problems starting on a coarse mesh where the data and solution-dependent coefficients are unresolved, the problem is unstable and approximation properties do not hold. The Newton-like iterations of the solver are based on the framework of regularized pseudotransient continuation where the proposed time integrator is a variation on the Newmark strategy, designed to introduce controllable numerical dissipation and to reduce the fluctuation between the iterates in the coarse mesh regime where the data is rough and the linearized problems are badly conditioned and possibly indefinite. An algorithm and updated marking strategy is presented to produce a stable sequence of iterates as boundary and internal layers in the data are captured by adaptive mesh partitioning. The method is suitable for use in an adaptive framework making use of local error indicators to determine mesh refinement and targeted regularization. Derivation and $q$-linear local convergence of the method is established, and numerical examples demonstrate the theory including the predicted rate of convergence of the iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.