Abstract

Ce0.8Pr0.2OY solid solutions with ultrafine crystalline sizes and high specific surface area were prepared by an improved citrate precursor method, where a nitrogen treatment was added prior to calcinations in air. The samples were characterized by TG-DSC, Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET nitrogen adsorption. XRD and Raman results show that the formation of Ce0.8Pr0.2OY solid solutions typical of the fluorite-like cubic structure with oxygen vacancies occurs when the Ce–Pr citrate precursors are heated at high temperature in the nitrogen atmosphere. Subsequent calcinations at a low temperature in air to remove carbon species have no apparent effects on the formed solid solutions. Ce0.8Pr0.2OY solid solution prepared by the improved citrate precursor method at 800°C has ultrafine nanoparticles of less than 10 nm and high specific surface area of 92.1 m2/g, while the sample prepared by the conventional citrate precursor method has mean particle size of 62.1 nm and specific surface area of 18.1 m2/g. Furthermore, Ce–Pr solid solution by the improved method have the mesoporous structure, more lattice defects and oxygen vacancies, which will have a promising application in the catalyst region as well as SOFC field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.