Abstract

Amyloid-beta (Aβ) peptide mediates several neurodegenerative diseases. The 42 amino acid (Aβ1–42) is the predominant form of peptide found in the neuritic plaques and has been demonstrated to be neurotoxic in vivo and in vitro. The availability of large quantities of Aβ peptide will help in several biochemical and biophysical studies that may help in exploring the aggregation mechanism and toxicity of Aβ peptide. We report a convenient and economical method to obtain such a peptide biologically. Synthetic oligonucleotides encoding Aβ1–42 were constructed and amplified through the polymerase cycling assembly (also known as assembly PCR), followed by the amplification PCR. Aβ1–42 gene was cloned into pET41a(+) vector for expression. Interestingly, the addition of 3% (v/v) ethanol to the culture medium resulted in the production of large amounts of soluble Aβ fusion protein. The Aβ fusion protein was subjected to a Ni–NTA affinity chromatography followed by enterokinase digestion, and the Aβ peptide was purified using glutathione Sepharose affinity chromatography. The peptide yield was ∼15mg/L culture, indicating the utility of this method for high-yield production of soluble Aβ peptide. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and immunoblotting with anti-His antibody confirmed the identity of purified Aβ fusion protein and Aβ peptide. In addition, this method provides an advantage over the chemical synthesis and other conventional methods used for large-scale production of recombinant Aβ peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.