Abstract

Retinal detachment (RD) results in disruption of retinal physiology and visual function. Although surgical intervention has been well-developed to restore the retinal anatomic structure, post-op progression of visual function decline is prominent in a large proportion of patients. Therefore, the establishment of a disease model that accurately mimics RD pathogenesis is crucial to mechanistic study and drug screening. General protocols to induce RD in mice are frequently associated with complications leading to model instability and reduced reproducibility. In this study, we established a stable and reproducible mice RD model with a detached area of over 90% and rare complications. Briefly, the modified method was realized by vitreous humor extraction to reduce intraocular pressure, followed by directly-visible hyaluronic acid injection into subretinal space. The detachment of retina was confirmed by fundus photography, and progressive thinning of the outer nuclear layer (ONL) was determined by HE staining. Apoptotic signals were prominent in the ONL. Consistently, visual function was significantly compromised as determined by ERG. Moreover, retinal vasculature appeared to remodel and acquired winding, twisted and dilated structures illustrated by 3D reconstruction. In addition, activation of Müller cells and microglia, and infiltration of blood-derived macrophages were detected locally. Collectively, we have established a modified protocol to model RD with increased stability, reproducibility and fewer complications, and 3D high-resolution imaging and reconstruction of vasculature could provide new tools to evaluate this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.