Abstract

Recent advances in genomic refactoring have been hindered by the ever-present complication of internal or cryptic transcriptional regulation. Typical approaches to these features have been to randomize or perform mass alterations to the gene sequences thought to contain the regulatory motifs; however, this approach can cause problems by altering translational speeds, introducing long distance DNA-DNA interaction effects, and inducing RNA toxicity. Previously, we developed a rational design approach named COdon Restrained Promoter SilEncing (CORPSE) which takes externally identified promoter sequences and uses position-specific scoring matrices as proxy promoter strengths to make minimal changes to promoter sequences to disable their activity. Additionally, through inverting our system we were also able to modify weak internal promoters to increase their activity. In this chapter, we augment our previous process with the biophysical model Promoter Calculator v1.0 developed by LaFleur et al. to combine promoter identification and activity prediction, with our algorithm to silently modify promoter sequences, to provide more robust promoter elimination and creation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.