Abstract

The International Maritime Organization (IMO) is tightening regulations on air pollutants. Consequently, more LNG-powered ships are being used to adhere to the sulfur oxide regulations. Among the tank materials for storing LNG, 9% nickel steel is widely used for cryogenic tanks and containers due to its high cryogenic impact toughness and high yield strength. Hence, numerous studies have sought to predict 9% nickel steel welding distortion. Previously, a methodology to derive the optimal parameters constituting the Goldak welding heat source for arc welding was developed. This was achieved by integrating heat transfer finite element analysis and optimization algorithms. However, this process is time-consuming, and the resulting shape of the weld differs by ~15% from its actual size. Therefore, this study proposes a simplified model to reduce the analysis time required for the arc welding process. Moreover, a new objective function and temperature constraints are presented to derive a more sophisticated heat source model for arc welding. As a result, the analysis time was reduced by ~70% compared to that previously reported, and the error rates of the weld geometry and HAZ size were within 10% and 15% of the actual weld, respectively. The findings of this study provide a strategy to rapidly predict welding distortion in the field, which can inform the revision of welding guidelines and overall welded structure designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call