Abstract
In this paper, a method for symmetry axis detection in binary images is presented. The method is an improvement of a previous method presented by the same authors. The method exploits the nonlinear dynamic behavior of cellular neural networks (CNNs), in particular the propagation of bipolar waves. The image is represented in polar form, transforming the symmetry with respect to an arbitrarily oriented axis in a vertical symmetry: the position of the vertical axis corresponds to the angle of the original symmetry axis. The parallel CNN architecture is useful to speed up the computation, because of the high computational cost of the task. The proposed algorithm is tested on many real images, with good results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.