Abstract

Time history testing using a shaking table is one of the most widely used methods for assessing the dynamic response of structures. In shaking-table experiments and on-site monitoring, acceleration sensors are facing problems of missing data due to the fact of measurement point failures, affecting the validity and accuracy of assessing the structural dynamic response. The original measured signals are decomposed by ensemble empirical mode decomposition (EEMD), and the widely used deep neural networks (DNNs), gated recurrent units (GRUs), and long short-term memory networks (LSTMs) are used to predict the subseries of the decomposed original measured signal data to help model and recover the irregular, periodic variations in the measured signal data. The raw acceleration data of a liquefied natural gas (LNG) storage tank in shaking-table experiments were used as an example to compare and discuss the method’s performance for the complementation of missing measured signal data. The results of the measured signal data recovery showed that the hybrid method (EEMD based) proposed in this paper had a higher complementary performance compared with the traditional deep learning methods, while the EEMD-LSTM exhibited the best missing data complementary accuracy among all models. In addition, the effect of the number of prediction steps on the prediction accuracy of the EEMD-LSTM model is also discussed. This study not only provides a method to fuse EEMD and deep learning models to predict measured signal’ missing data but also provides suggestions for the use of EEMD-LSTM models under different conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call