Abstract

A contrast enhancement of medical images using Type II fuzzy set theory is suggested. Fuzzy set theory considers uncertainty in the form of membership function but to have better information on uncertainty on the membership function, Type II fuzzy set is considered. Type II fuzzy set considers fuzziness in the membership function. Hamacher T co norm is used as an aggregation operator to form a new membership function using the upper and lower membership function of Type II fuzzy set. The image with the new membership function is an enhanced image. As medical images contain lot of uncertainties, Type II fuzzy set may be a good tool for medical image analysis. To show the effectiveness of the proposed method, the results are compared with fuzzy, intuitionistic fuzzy, and existing Type II fuzzy methods. Experiments on several images show that the proposed Type II fuzzy method performs better than the existing methods. To show the advantage of the proposed enhancement method, detection or extraction of abnormal lesions or blood vessels has been carried out on enhanced images of all the methods. It is observed that the segmented results on the proposed enhanced images are better.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.