Abstract

A small signal model of a multi-infeed high-voltage direct current (HVdc) transmission system containing a line commutated converter (LCC) and a voltage source converter (VSC) is developed. This model represents the LCC and VSC converters as operational impedances as seen from the converter ac busbar. This permits the converters to be included in the effective short-circuit ratio (ESCR) calculations. The resulting ESCR is referred to in this paper as the “Impedance based Effective Short Circuit Ratio” (IESCR). It is shown that the maximum power transfer limit (referred to as the maximum available power or MAP) of the converters is better predicted by this index compared to the conventional ESCR which ignores the operational impedances of the converters. The question also arises as to how close to this theoretical maximum power transfer limit can the HVdc system operate. Using the small-signal model, it is shown that with commonly used control strategies, the predicted MAP can only be achieved by reducing the controller gains. The results are validated using detailed electromagnetic transients simulation of the multi-infeed VSC-LCC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.