Abstract

We present an improved matrix—matrix multiplication routine (General Matrix Multiply [GEMM]) in the MAGMA BLAS library that targets the NVIDIA Fermi graphics processing units (GPUs) using Compute Unified Data Architecture (CUDA). We show how to modify the previous MAGMA GEMM kernels in order to make a more efficient use of the Fermi’s new architectural features, most notably their extended memory hierarchy and memory sizes. The improved kernels run at up to 300 GFlop/s in double precision and up to 645 GFlop/s in single precision arithmetic (on a C2050), which is correspondingly 58% and 63% of the theoretical peak. We compare the improved kernels with the currently available version in CUBLAS 3.1. Further, we show the effect of the new kernels on higher-level dense linear algebra (DLA) routines such as the one-sided matrix factorizations, and compare their performances with corresponding, currently available routines running on homogeneous multicore systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.