Abstract
AbstractThe arithmetic regularity lemma due to Green [GAFA 2005] is an analogue of the famous Szemerédi regularity lemma in graph theory. It shows that for any abelian group G and any bounded function f : G → [0, 1], there exists a subgroup H ⩽ G of bounded index such that, when restricted to most cosets of H, the function f is pseudorandom in the sense that all its nontrivial Fourier coefficients are small. Quantitatively, if one wishes to obtain that for 1 − ε fraction of the cosets, the nontrivial Fourier coefficients are bounded by ε, then Green shows that |G/H| is bounded by a tower of twos of height 1/ε3. He also gives an example showing that a tower of height Ω(log 1/ε) is necessary. Here, we give an improved example, showing that a tower of height Ω(1/ε) is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.