Abstract

This paper presents a control strategy to improve the low-voltage ride-through capability of a doubly fed induction generator (DFIG); since the stator of a DFIG is directly connected to a grid, this sort of machine is very sensitive to grid disturbance. Grid voltage sag causes overcurrents and overvoltages in rotor windings, which can damage the rotor-side converter (RSC). In order to protect the RSC, a classical solution based on installation of the so-called crowbar is adopted; however, as the DFIG absorbs reactive power from the grid, this type of solution deteriorates grid voltage sags and cannot meet the requirements of a new grid code. An improved control strategy which uses virtual resistance to limit rotor side overcurrents is proposed in this paper, which can make a crowbar inactive and supply reactive power to fulfill the latest grid code requirement during voltage sags. In order to validate the proposed strategy, simulations and experiments have been carried out, and the results demonstrate the effectiveness of the proposed strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call