Abstract

In this paper, we propose a new approach for a block-based lossless image compression using finite mixture models and adaptive arithmetic coding. Conventional arithmetic encoders encode and decode images sample-by-sample in raster scan order. In addition, conventional arithmetic coding models provide the probability distribution for whole source symbols to be compressed or transmitted, including static and adaptive models. However, in the proposed scheme, an image is divided into non-overlapping blocks and then each block is encoded separately by using arithmetic coding. The proposed model provides a probability distribution for each block which is modeled by a mixture of non-parametric distributions by exploiting the high correlation between neighboring blocks. The Expectation-Maximization algorithm is used to find the maximum likelihood mixture parameters in order to maximize the arithmetic coding compression efficiency. The results of comparative experiments show that we provide significant improvements over the state-of-the-art lossless image compression standards and algorithms. In addition, experimental results show that the proposed compression algorithm beats JPEG-LS by 9.7 % when switching between pixel and prediction error domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.